MAX. MARKS: 20

TIME: 45 MINS

INDIAN SCHOOL SOHAR PERIODIC TEST –III(2022 – 23) MATHEMATICS

Class: IX

Date: 19-01-2023

General Instructions:

- a. All questions are compulsory.
- b. Section A comprises 1 question of 1 mark, Section B comprises 3 questions of 2 marks each and Section Ccomprises 3 questions of 3 marks each.

SECTION A

1. The degree	of 3 is:		
(a) 0	(b) 1	(c) 2	(d) 3

- 2. The value of $p(x) = 5x 4x^2 + 3$ for x = -1 is: (a) 6 (b) -6 (c) 3 (d) -3
- 3. The bisectors of any two adjacent angles of a parallelogram intersect at: (a) 45° (b) 30° (c) 90° (d) 60°
- 4. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc:
 (a) 150°
 (b) 30°
 (c) 60°
 (d) none of these
- 5. In Figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that \angle BEC = 130° and \angle ECD = 20°. Find \angle BAC.

SECTION B

- 6. Use the Factor Theorem to determine whether g (x) = x + 1 is a factor of p (x) = $2x^3 + x^2 2x 1$.
- 7. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- 8. Prove that a cyclic parallelogram is a rectangle.

OR

If a line intersects two concentric circles with centre 0 at A, B, C and D, prove that AB = CD.

SECTION C

- 9. Factorize $x^3 3x^2 9x 5$.
- 10. Prove "The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle
- 11. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
 - (i) D is the mid-point of AC.
 - (ii) MD ⊥AC

(iii)
$$CM = MA = \frac{1}{2}AB$$

OR

In \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F. Show that

(i) quadrilateral ABED is a parallelogram(ii) quadrilateral BEFC is a parallelogram(iii) AD || CF and AD = CF.

MAX. MARKS: 20

TIME: 45 MINS

INDIAN SCHOOL SOHAR PERIODIC TEST –III(2022 – 23) MATHEMATICS

Class: IX

Date: 19-01-2023

General Instructions:

- a. All questions are compulsory.
- b. Section A comprises 1 question of 1 mark, Section B comprises 3 questions of 2 marks each and Section Ccomprises 3 questions of 3 marks each.

SECTION A

- 1. The value of $p(x) = 5x 4x^2 + 3$ for x = -1 is: (a) 6 (b) -6 (c) 3 (d) -3
- 2. The degree of 3 is: (a) 0 (b) 1 (c) 2 (d) 3
- 3. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc:
 (a) 150°
 (b) 30°
 (c) 60°
 (d) none of these
- 4. The bisectors of any two adjacent angles of a parallelogram intersect at: (a) 45° (b) 30° (c) 90° (d) 60°
- 5. In Figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that \angle BEC = 130° and \angle ECD = 20°. Find \angle BAC.

SECTION B

- 6. Use the Factor Theorem to determine whether g (x) = x + 1 is a factor of p (x) = $2x^3 + x^2 2x 1$.
- 7. ABCD is a rhombus. Show that diagonal AC bisects ∠A as well as ∠C and diagonal BD bisects ∠B as well as ∠D.
- 8. Prove that a cyclic parallelogram is a rectangle.

OR

If a line intersects two concentric circles with centre 0 at A, B, C and D, prove that AB = CD.

SECTION C

- 9. Factorize $x^3 3x^2 9x 5$.
- 10. Prove "The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle
- 11. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
 - (i) D is the mid-point of AC.
 - (ii) MD ⊥AC
 - (iii) $CM = MA = \frac{1}{2}AB$

In \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F. Show that

OR

(i) quadrilateral ABED is a parallelogram(ii) quadrilateral BEFC is a parallelogram(iii) AD || CF and AD = CF.