MATHEMATICS

Class: IX
MAX. MARKS: 20
Date: 19-01-2023
TIME : 45 MINS

General Instructions:

a. All questions are compulsory.
b. Section A comprises 1 question of 1 mark, Section B comprises $\mathbf{3}$ questions of 2 marks each and Section Ccomprises 3 questions of 3 marks each.

SECTION A

1. The degree of 3 is:
(a) 0
(b) 1
(c) 2
(d) 3
2. The value of $p(x)=5 x-4 x^{2}+3$ for $x=-1$ is:
(a) 6
(b) -6
(c) 3
(d) -3
3. The bisectors of any two adjacent angles of a parallelogram intersect at:
(a) 45°
(b) 30°
(c) 90°
(d) 60°
4. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc:
(a) 150°
(b) 30°
(c) 60°
(d) none of these
5. In Figure, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

(a) 80°
(b) 60°
(c) 90°
(d) 110^{0}

SECTION B

6. Use the Factor Theorem to determine whether $g(x)=x+1$ is a factor of $p(x)=2 x^{3}+x^{2}-2 x-1$.
7. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle B$ as well as $\angle D$.
8. Prove that a cyclic parallelogram is a rectangle.

OR
If a line intersects two concentric circles with centre 0 at A, B, C and D, prove that $A B=C D$.

SECTION C

9. Factorize $x^{3}-3 x^{2}-9 x-5$.
10. Prove "The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle
11. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects $A C$ at D. Show that
(i) D is the mid-point of $A C$.
(ii) $M D \perp A C$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

OR

In $\triangle A B C$ and $\triangle D E F, A B=D E, A B| | D E, B C=E F$ and $B C|\mid E F$. Vertices A, B and C are joined to vertices D, E and F. Show that

(i) quadrilateral $A B E D$ is a parallelogram
(ii) quadrilateral $B E F C$ is a parallelogram
(iii) $A D|\mid C F$ and $A D=C F$.

MATHEMATICS

Class: IX
MAX. MARKS: 20
Date: 19-01-2023
TIME : 45 MINS

General Instructions:

a. All questions are compulsory.
b. Section A comprises 1 question of 1 mark, Section B comprises $\mathbf{3}$ questions of 2 marks each and Section Ccomprises 3 questions of 3 marks each.

SECTION A

1. The value of $p(x)=5 x-4 x^{2}+3$ for $x=-1$ is:
(a) 6
(b) -6
(c) 3
(d) -3
2. The degree of 3 is:
(a) 0
(b) 1
(c) 2
(d) 3
3. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc:
(a) 150°
(b) 30°
(c) 60°
(d) none of these
4. The bisectors of any two adjacent angles of a parallelogram intersect at:
(a) 45°
(b) 30°
(c) 90°
(d) 60°
5. In Figure, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

(a) 80°
(b) 60°
(c) 90°
(d) 110^{0}

SECTION B

6. Use the Factor Theorem to determine whether $g(x)=x+1$ is a factor of $p(x)=2 x^{3}+x^{2}-2 x-1$.
7. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle B$ as well as $\angle \mathrm{D}$.
8. Prove that a cyclic parallelogram is a rectangle.

OR
If a line intersects two concentric circles with centre 0 at A, B, C and D, prove that $A B=C D$.

SECTION C

9. Factorize $x^{3}-3 x^{2}-9 x-5$.
10. Prove "The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle
11. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects $A C$ at D. Show that
(i) D is the mid-point of $A C$.
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

OR
In $\triangle A B C$ and $\triangle D E F, A B=D E, A B| | D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F. Show that

(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) $A D \| C F$ and $A D=C F$.

